Abstract

This paper presents an all-optical high-sensitivity resonant photoacoustic (PA) sensor to realize remote, long-distance and space-limited trace gas detection. The sensor is an integration of a T-type resonant PA cell and a particular cantilever-based fiber-optic acoustic sensor. The finite element simulations about the cantilever vibration mode and the PA field distributions are carried out based on COMSOL. The all-optical high-sensitivity resonant PA sensor, together with a high-speed spectrometer and a DFB laser source, makes up of a photoacoustic spectroscopy (PAS) system which is employed for CH4 detection. The measured sensitivity is 0.6 pm/ppm in the case of 1000 s average time, and the minimum detection limit (MDL) reaches 15.9 parts per billion (ppb). The detective light source and the excitation light source are all transmitted by optical fibers, therefore remote and long-distance measurement of trace gas can be realized. Furthermore, the excitation light source and the acoustic sensor are designed at the same side of the PA cell, the sensor may be used for space-limited trace gas detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call