Abstract

All-optical bistable switching dynamics of 1.55-/spl mu/m two-segment strained multiquantum-well (MQW) distributed-feedback (DFB) lasers were systematically studied both experimentally and theoretically. Some fundamental optical functionalities, including all-optical set-reset (flip-flop) operations, were demonstrated. The switching responses of these bistable lasers were studied, for the first time, with optical injection from a single-mode DFB laser, indicating that the switching dynamics based on gain quenching and absorption saturation are inherently different. A theoretical model including optical injection was developed to study these all-optical bistable switching characteristics in segmented bistable lasers. It was found that the nonuniform distribution of the photon density in the bistable laser cavity induced by optical injection was essential to perform the time-domain switching operations. Simulations showed a good agreement with experimental observations and indicated design improvements. Although the switching responses in the range of tens of picoseconds can be obtained with these bistable lasers, the maximum repetition frequency of the bistable systems would still be limited to the hundreds of megahertz due to the slow carrier recovery time (5 ns) of the lasers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call