Abstract
Low-frequency (6 Hz), long-duration (3 s) electrical stimulation in mice produces seizures characterized by immobility, focal clonus, and automatic behaviors reminiscent of human limbic epilepsy. Renewed interest has been expressed in this seizure model with the recognition that it is sensitive to a broad spectrum of anticonvulsants (AEDs) and may have distinct pharmacologic responsiveness from other in vivo tests of AED efficacy. Here we sought to determine whether the progesterone-derived neuroactive steroid allopregnanolone (5alpha,3alpha-P) and several structural analogues with varying degrees of activity as positive allosteric modulators of gamma-aminobutyric acid (GABA)A receptors are protective in the 6-Hz seizure model. Mice were pretreated with neuroactive steroids (15 min before) or clonazepam (CZP; 30 min before) to 6-Hz corneal stimulation (32 mA). Animals that failed to exhibit immobility were considered protected. The neuroactive steroids prevented 6-Hz seizures with rank order of potencies (ED50 values): ganaxolone (6.3 mg/kg) > 5alpha,3alpha-P (14.2 mg/kg) > or = 5beta,3alpha-P (14.4 mg/kg) > 5alpha,3beta-P (>100 mg/kg). CZP also was protective (ED(50) value, 0.075 mg/kg). The potencies of the neuroactive steroids and CZP are similar to their previously reported activities in the pentylenetetrazol (PTZ) seizure model. Neuroactive steroids have comparable potencies in the 6-Hz and PTZ models. Their structural specificity in both models corresponds with their activities as positive allosteric modulators of GABAA receptors, although ganaxolone is more potent than expected, probably because it has greater bioavailability. The 6-Hz model may be a valuable tool in drug development for the identification of GABAergic AEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.