Abstract

Many cold adapted species occur in both montane settings and in the subarctic. Their disjunct distributions create taxonomic complexity because there is no standardized method to establish whether their allopatric populations represent single or different species. This study employs DNA barcoding to gain new perspectives on the levels and patterns of sequence divergence among populations of 122 arctic-alpine species of Lepidoptera from the Alps, Fennoscandia and North America. It reveals intraspecific variability in the barcode region ranging from 0.00–10.08%. Eleven supposedly different species pairs or groups show close genetic similarity, suggesting possible synonymy in many cases. However, a total of 33 species show evidence of cryptic diversity as evidenced by the presence of lineages with over 2% maximum barcode divergence in Europe, in North America or between the two continents. Our study also reveals cases where taxonomic names have been used inconsistently between regions and exposes misidentifications. Overall, DNA barcodes have great potential to both increase taxonomic resolution and to make decisions concerning the taxonomic status of allopatric populations more objective.

Highlights

  • Gene flow between North American and Eurasian conspecifics across the Beringian land bridge [3] was interrupted at about the same time, reflecting the postglacial flooding of the Bering Strait

  • Species assignments followed current taxonomy, which is mainly based on external morphology and genitalia

  • Intraspecific variation was considerably lower within single geographic regions, averaging 0.65% for North America, 0.39% for the Alps and 0.22% for Fennoscandia with levels of variation in the same rank order as the size of the regions (Figures 1 and 2)

Read more

Summary

Introduction

Most species owe their description to the study of morphological variation, but some are based on the analysis of both molecular and morphological characters. The coupling of differing species concepts with variation in the characters examined has created an undesirable level of subjectivity in species delineation, for taxa with allopatric ranges. Many species found in both alpine and arctic habitats fall into the latter category because their ranges are fragmented, reflecting the discontinuous distribution of the habitats that they occupy. Their disjunct distributions were gained through range shifts following deglaciation as rising temperatures provoked both the northward movement of populations and the shift of southern populations to higher elevations on mountains. Gene flow between North American and Eurasian conspecifics across the Beringian land bridge [3] was interrupted at about the same time, reflecting the postglacial flooding of the Bering Strait

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call