Abstract

Isolation and demographic history are key factors that affect lineage divergence of tree species in topographic complex areas, such as the Qinghai-Tibet Plateau (QTP), yet few studies have evaluated these factors in a coalescent-based modeling framework. In the present study, we surveyed ten nuclear DNA sequence loci (nDNA) and six nuclear microsatellite loci (nSSR) for an endangered conifer, Cupressus chengiana, throughout its natural range in the eastern QTP. BARRIER analyses revealed a strong genetic barrier between Gansu and Sichuan populations of C. chengiana, and isolation with migration models detected limited gene flow between them, supporting the division of this species into two evolutionary significant units (ESUs). Two independent coalescent-based approaches suggest a Quaternary divergence between ESUs, their consensus age range ((0.09–) 0.59–1.53 (–2.71) Mya) largely overlaps with the time period when the largest glaciation occurred in the QTP. Both demographic inferences, IMa2 and DIYABC, suggest that both ESUs may have experienced a bottleneck or population contraction event during the late Quaternary. A documented massive recent anthropogenic habitat loss and fragmentation may have led to further decrease of the natural distribution of this conifer. We propose that the conservation and management of both natural stands and plantations of C. chengiana should be reconsidered in the light of our findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call