Abstract

Axolotl (Ambystoma mexicanum) limb regeneration begins with blastemas of various sizes, in contrast to the limb developmental process. Despite this size variation, normal limb morphology, consistent with a limb stump size, is regenerated. This outcome suggests the existence of underlying scale-invariant mechanisms. To identify such mechanisms, we examined the allometric relationships between blastema size, and Sonic Hedgehog (Shh) and Fibroblast Growth Factor 8 (Fgf8) expression patterns against limb stump size. We found that all factors showed allometric rather than isometric scaling; specifically, their relative sizes decrease with an increase in limb stump size. However, the ratio of Shh/Fgf8 signaling dominant region was nearly constant, independent of blastema/body size. Furthermore, the relative spatial patterns of cell density and proliferation activity and the relative position of first digit formation were scale-invariant in the summed Shh/Fgf8 crosstalk region. This scale-invariant nature may underlie the morphogenesis of normal limbs from different sizes of blastemas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.