Abstract

BackgroundIn most mammals, lactating mothers dramatically increase their food intake after parturition and reach a peak intake rate after a certain time while their offspring continue to grow. A common view, perpetuated by the metabolic theory of ecology, is that the allometric scaling of maternal metabolic rate with body mass limits the changes in energy intake and expenditure. Therefore these potential effects of metabolic scaling should be reflected in the elevation of maternal energy intake during lactation. To test this hypothesis, we collected published data on 24 species (13 domesticated) and established scaling relationships for several characteristics of the patterns of energy intake elevation (amplitude of the elevation, time to peak, and cumulative elevation to peak).ResultsA curvilinear allometric scaling relationship with maternal body mass (in double-logarithmic space) was found for the amplitude of maternal energy intake elevation, similarly to what has been observed for scaling relationships of basal metabolic rate in non-breeding mammals. This result indirectly supports the metabolic theory of ecology. However, this curvilinear allometric scaling does not seem to drive the scaling relationships found for the other characteristics of maternal energy intake. Both the duration and shape of the energy intake patterns showed substantial variation independently of species’ body mass.ConclusionsData available for a few mammals, mostly domesticated, provides little evidence for the hypothesis that a single law of metabolic scaling governs the elevation of maternal energy intake after parturition. Obtaining further food intake data in wild species will be crucial to unravel the general mechanisms underlying variation in this unique adaptation of mammalian females.Electronic supplementary materialThe online version of this article (doi:10.1186/s12983-016-0164-y) contains supplementary material, which is available to authorized users.

Highlights

  • In most mammals, lactating mothers dramatically increase their food intake after parturition and reach a peak intake rate after a certain time while their offspring continue to grow

  • Variation in the shape of maternal energy intake patterns To characterize the variations in the shape of MEImat patterns, we modelled the changes in the cumulative elevation of MEImat during lactation

  • A non-significant curvilinear concave-up scaling relationship was observed for the time to peak (Fig. 2c), meaning that the scaling exponent tended to increase with maternal body mass instead of decreasing as we would expect from the metabolic theory of ecology (MTE)

Read more

Summary

Introduction

In most mammals, lactating mothers dramatically increase their food intake after parturition and reach a peak intake rate after a certain time while their offspring continue to grow. A common view, perpetuated by the metabolic theory of ecology, is that the allometric scaling of maternal metabolic rate with body mass limits the changes in energy intake and expenditure These potential effects of metabolic scaling should be reflected in the elevation of maternal energy intake during lactation. A common, yet controversial [4], viewpoint perpetuated by the MTE is that the allometric scaling of metabolic rate with body mass dictates the rate and duration of other biological processes, including key traits of mammalian reproduction [5,6,7]. In most of these studies, the energetic. It should be noted that MEImat during gestation poorly reflects maternal effort to fetal development, possibly due to space competition between fetal mass and the alimentary tract within the abdomen [21]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call