Abstract
While basal metabolic rate (BMR) scales proportionally with body mass (Mb ), it remains unclear whether the relationship differs between mammals from aquatic and terrestrial habitats. We hypothesized that differences in BMR allometry would be reflected in similar differences in scaling of O2 delivery pathways through the cardiorespiratory system. We performed a comparative analysis of BMR across 63 mammalian species (20 aquatic, 43 terrestrial) with a Mb range from 10 kg to 5318 kg. Our results revealed elevated BMRs in small (>10 kg and <100 kg) aquatic mammals compared to small terrestrial mammals. The results demonstrated that minute ventilation, that is, tidal volume (VT )·breathing frequency (fR ), as well as cardiac output, that is, stroke volume·heart rate, do not differ between the two habitats. We found that the "aquatic breathing strategy", characterized by higher VT and lower fR resulting in a more effective gas exchange, and by elevated blood hemoglobin concentrations resulting in a higher volume of O2 for the same volume of blood, supported elevated metabolic requirements in aquatic mammals. The results from this study provide a possible explanation of how differences in gas exchange may serve energy demands in aquatic versus terrestrial mammals.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.