Abstract

The accurate estimation of tree above-ground (AGB) and below-ground (BGB) biomass components and their root/shoot ratio play key roles in stand and country-level forest biomass and carbon stock estimation. Nevertheless, site-specific and appropriate biomass equations and root/shoot ratio are hardly available for natural larch (Larix sibirica Ledeb.) forests in Mongolia. The present study aimed (1) to develop allometric equations to estimate the above- and below-ground biomass of L. sibirica trees, and (2) to estimate the root/shoot ratio applicable for estimating the root biomass based on above-ground biomass of natural larch forests in northern Mongolia. A total of 40 trees with DBH ranging from 6.8 to 40.8 cm were sampled for tree biomass analyses. For each biomass component, we calculated the proportion of biomass allocated to different components, and also tested four allometric equations based on diameter at breast height (DBH) and height (H) as independent variables. Our results, based on measurements of oven-dried biomass, revealed that stem biomass on average accounted for 44.5% and followed by branch (28.6%) and root (19.9%) biomass, respectively. Stem and branch biomass proportions were gradually increased with increasing DBH, while a contrary trend was observed for needles. The root/shoot ratio averaged 0.25. A comparison of the allocation of root biomass by diameter fractions showed an ever-growing trend of coarse roots with an increase in stem diameter, which often exceeded more than 50% of the total root biomass. However, biomass equations, which include both DBH and H were more precise than equations that are solely based only on DBH. Consequently, among the proposed allometric regression models for estimating the AGB and BGB, the equation y = aD b H c was selected as the best-fitted equation for estimating each biomass component in Siberian larch forests. These allometric equations are available to be used for the estimation of natural larch forest biomass and carbon stocks in the Khentii Mountains of Mongolia, where extreme continental climate conditions dominate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call