Abstract

The authors developed a cultured dermal substitute (CDS) composed of a spongy collagen containing cultured fibroblasts. The cultured fibroblasts derived from Sprague Dawley rat skin were seeded on a spongy collagen at a density of 5 x 105 cells cm-2 and cultured for 7 days. This CDS was applied to the debrided wound of full-thickness burn which was inflicted experimentally on the dorsum of Wister rat, and then the wound conditions were observed over a period of 2 weeks. The comparative study was conducted using an acellular spongy collagen as well as a commercially available temporary wound dressing, Biobrane®, since a different type of cultured dermal substitute, Dermagraft-TC®, is composed of Biobrane®, whose inner site is combined with cultured fibroblasts. Each covering material was applied on the debrided wound area and exchanged by new one 1 week later. When the debrided wound was covered with Biobrane®, a small portion of necrotic tissue was observed I week after application, and the granulation tissue formation was greatly delayed. This wound area showed a poor granulation tissue even 2 weeks later. On the contrary, when covered with an acellular spongy collagen, no necrotic tissue was observed. This wound area showed a more or less irregular granulation tissue at 1 week and then a healthy granulation tissue 2 weeks later. This preliminary comparative study suggests that an acellular spongy collagen is able to function as a more suitable matrix for CDS, compared with Biobrane®. The wound area covered with a CDS assumed a moist, shiny, and hyperaemic appearance 1 week after application showing a healthy granulation tissue. The macroscopic evaluations indicate that the CDS is able to prepare a healthy granulation tissue at an earlier stage, compared with the acellular spongy collagen. In addition, the histologic views demonstrate that the CDS is able to prepare a thicker and denser granulation tissue, compared with the acellular spongy collagen. Although the fate of cultured fibroblasts in the CDS on the wound surface within 1 week is not clear, these findings suggest that fibroblasts in CDS are able to provide excellent conditions for wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.