Abstract
A recent research direction in data-driven modeling is the identification of dynamic networks, in which measured vertex signals are interconnected by dynamic edges represented by causal linear transfer functions. The major question addressed in this article is where to allocate external excitation signals such that a network model set becomes generically identifiable when measuring all vertex signals. To tackle this synthesis problem, a novel graph structure, referred to as <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">directed pseudotree</i> , is introduced, and the generic identifiability of a network model set can be featured by a set of disjoint directed pseudotrees that cover all the parameterized edges of an <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">extended graph</i> , which includes the correlation structure of the process noises. Thereby, an algorithmic procedure is devised, aiming to decompose the extended graph into a minimal number of disjoint pseudotrees, whose roots then provide the appropriate locations for excitation signals. Furthermore, the proposed approach can be adapted using the notion of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">antipseudotrees</i> to solve a dual problem, which is to select a minimal number of measurement signals for generic identifiability of the overall network, under the assumption that all the vertices are excited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.