Abstract

The Dempster-Shafer theory of evidence is developed here in a very general setting. First, its symbolic or algebraic part is discussed as a body of arguments which contains an allocation of support and an allowment of possibility for each hypothesis. It is shown how such bodies of arguments arise in the theory of hints and in assumption-based reasoning in logic. A rule of combination of bodies of arguments is then defined which constitutes the symbolic counterpart of Dempster's rule. Bodies of evidence are next introduced by assigning probabilities to arguments. This leads to support and plausibility functions on some measurable hypotheses. As expected in Dempster-Shafer theory, they are shown to be set functions, monotone or alternating of infinite order, respectively. It is shown how these support and plausibility functions can be extended to all hypotheses. This constitutes then the numerical part of evidence theory. Finally, combination of evidence based on the combination of bodies of arguments is discussed and a generalized version of Dempster's rule is derived. The approach to evidence theory proposed is general and is not limited to finite frames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.