Abstract

To operate a multiple-product manufacturing system under a CONWIP control policy, one must decide how to assign kanbans to products. With a fixed total number of kanbans in a competitive environment, the goal is to determine their allocation to product types in order to minimize lost sales equitably. In particular, we consider systems in which the products may make multiple visits to the same station with a different processing time distribution on each repeat visit. With a fixed number of kanbans dedicated to each product, the system is modeled as a multiple-chain multiple-class closed queuing network. A nonlinear program simultaneously provides an approximate performance evaluation and optimizes the allocation of kanbans to product types. In numerical examples, the allocations identified are similar to those obtained by exhaustive enumeration with simulation, but frequently differ significantly from a naïve allocation according to demand rates. A variant of the model that minimizes the total work-in-process to achieve specified throughput targets yields results similar to a previous heuristic method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.