Abstract

There is a type of algorithm for subpixel mapping (SPM), namely, the soft-then-hard SPM (STHSPM) algorithm that first estimates soft attribute values for land cover classes at the subpixel scale level and then allocates classes (i.e., hard attribute values) for subpixels according to the soft attribute values. This paper presents a novel class allocation approach for STHSPM algorithms, which allocates classes in units of class (UOC). First, a visiting order for all classes is predetermined, and the number of subpixels belonging to each class is calculated using coarse fraction data. Then, according to the visiting order, the subpixels belonging to the being visited class are determined by comparing the soft attribute values of this class, and the remaining subpixels are used for the allocation of the next class. The process is terminated when each subpixel is allocated to a class. UOC was tested on three remote sensing images with five STHSPM algorithms: back-propagation neural network, Hopfield neural network, subpixel/pixel spatial attraction model, kriging, and indicator cokriging. UOC was also compared with three existing allocation methods, i.e., linear optimization technique (LOT), sequential assignment in units of subpixel (UOS), and a method that assigns subpixels with highest soft attribute values first (HAVF). Results show that for all STHSPM algorithms, UOC is able to produce higher SPM accuracy than UOS and HAVF; compared with LOT, UOC is able to achieve at least comparable accuracy but needs much less computing time. Hence, UOC provides an effective and real-time class allocation method for STHSPM algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.