Abstract

Hybrid organic-inorganic halide perovskites as promising solar cell materials have great concern on their stability. Recently, all-inorganic perovskite CsPbI2Br has been considered as a first-class alternative with good stability as well as a suitable bandgap, and the highest solar cell efficiency has been achieved up to 16%. Using the first-principles calculations, we found that (i) CsPbI2Br is stable in tetragonal cell with a direct bandgap of 1.67 eV under PBE functional calculations approximating to the experimental value (1.92 eV). The upper valence band is derived from the antibonding states of s-p coupling, and the CBM is mainly composed of Pb-p states. (ii) The optical absorption is as strong as 104 cm−1 in the visible light range which can compare to that of the popular halide organic-inorganic hybrid perovskite. (iii) The electron transport material (ETM) in popular perovskite solar cells such as TiO2, ZnO, SnO2, PCBM and C60 together with the hole transport material (HTM) such as P3HT, CuI, NiO, PTAA and Spiro are suitable for CsPbI2Br solar cell devices. The band offset between different perovskites demonstrates that it is easier for CsPbI2Br to be doped p-type than for CsPbBr3 but harder than for CsPbI3. Band alignments of perovskites including CsPbI3, CsPbBr3, CsPbI2Br and CsSnI2Br together with the commonly used electron transport materials and hole transport materials are presented using the first principles calculations, which could help to improve the all inorganic CsPbI2Br solar cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call