Abstract

Breast cancer (BC) is a lethal disorder that threatens the life safety of the majority of females globally, with rising morbidity and mortality year by year. Doxorubicin is a cytotoxic anthracycline antibiotic that is widely used as one of the first-line chemotherapy agents for patients with BC. However, the efficacy of doxorubicin in the clinic is largely limited by its serious side effects and acquired drug resistance. Allicin (diallyl thiosulfinate), as the major component and key active compound present in freshly crushed garlic, has shown potential effects in suppressing chemotherapy resistance in various cancers. Our research aimed to explore the relationship between allicin and doxorubicin resistance in BC. To generate doxorubicin-resistant BC cell lines (MCF-7/DOX and MDA-MB-231/DOX), doxorubicin-sensitive parental cell lines MCF-7 and MDA-MB-231 were continuously exposed to stepwise increased concentrations of doxorubicin over a period of 6 months. CCK-8, colony formation, flow cytometry, RT-qPCR, and western blotting assays were performed to investigate the effects of allicin and/or doxorubicin treatment on the viability, proliferation and apoptosis and the expression of Nrf2, HO-1, phosphate AKT and AKT in doxorubicin-resistant BC cells. Our results showed that combined treatment of allicin with doxorubicin exhibited better effects on inhibiting the proliferation and enhancing the apoptosis of doxorubicin-resistant BC cells than treatment with allicin or doxorubicin alone. Mechanistically, allicin suppressed the levels of Nrf2, HO-1, and phosphate AKT in doxorubicin-resistant BC cells. Collectively, allicin improves the doxorubicin sensitivity of BC cells by inactivating the Nrf2/HO-1 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.