Abstract
Evidence indicates that indirect inhibitory regulation of glutamatergic transmission, via reducing glutamate release, may induce neuroprotection. The present work was designed to examine whether allicin, a major component of garlic with neuroprotective effects, affected the release of glutamate evoked by 4-aminopyridine in rat cerebrocortical nerve terminals (synaptosomes). Allicin caused a potent inhibition on the release of glutamate evoked by 4-aminopyridine, and this inhibitory effect was abolished in the presence of Ca2+-free medium and vesicular transporter inhibitor. Allicin decreased the 4-aminopyridine-evoked elevation of intrasynaptosomal Ca2+ levels, but had no effect on the synaptosomal plasma membrane potential. The allicin-mediated inhibition of glutamate release was prevented by the N- and P/Q-type channel blocker and the protein kinase C (PKC) inhibitor, but was not affected by the intracellular Ca2+-release inhibitors, mitogen-activated protein kinase inhibitor, and protein kinase A inhibitor. Western blotting data also showed that allicin significantly reduced the phosphorylation of PKC. Together, these data indicate that in rat cerebrocortical nerve terminals, allicin depresses glutamate release and appears to decrease N- and P/Q-type Ca2+ channel and PKC activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.