Abstract

The aim of this study was to investigate the effects of allicin on lead-induced bone loss in mice. Male C57BL/6J mice (3-weeks-old) were randomly divided into four groups: control group, lead group, allicin+lead group, and allicin group. Micro-CT, histology, oxidative stress, and osteoclastogenesis-related gene expression were analyzed. The results showed that allicin significantly ameliorated lead-induced bone loss, reduced oxidative stress, and inhibited osteoclastogenesis in mice. Moreover, we found that allicin upregulated the expression of SIRT1 and deacetylation of FoxO1. In conclusion, our study demonstrated that allicin exerts protective effects on lead-induced bone loss via antioxidant activity, preventing osteoclastogenesis, and activating SIRT1/FOXO1 pathway in mice, implying a potential therapy for lead-induced bone loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call