Abstract
The large size and electromagnetic interference of microphones array are long standing challenges for sound source localization. Here an all-fibre vector acoustic sensor based on crossed microfiber Bragg gratings (micro-FBGs) has been proposed and experimentally demonstrated that enables the two-dimension sound source localization with a size less than 1.5mm. Two micro-FBGs inscribed in the Co2+-doped fibre are fabricated through a hydrofluoric acid solution, which are placed parallel to each other to form a micro-FBG pair. Based on the self-heating and asymmetric temperature distribution of two Co2+-doped fibres, the crossed micro-FBGs provide a direct two-dimensional measurement of the acoustic particle velocity. The experimental results show that an orientation sensitivity of 1.57 mV/deg for the micro-FBGs is achieved with a figure-of-eight response of the acoustic source direction. Meanwhile, the direction responses of two crossed pairs of micro-FBGs are exactly orthogonal to each other, which could detect the sound source localization. The all-fibre vector acoustic sensor is immune to electromagnetic interference, which appears to have a variety of potential applications, including research in acoustic communication, pipeline monitoring and navigation, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.