Abstract

The obstacles of power scaling the supercontinuum (SC) source based on single-core photonic crystal fiber (PCF) are analyzed. The combination of high-power fiber lasers and multi-core PCFs would be a feasible method to obtain an all-fiber-integrated high-power broadband SC source (covering visible range). In this paper, we present a comprehensive study of high-power SC generation in multi-core PCFs. Comparative experiments are performed by using a high-power pulse-repetition-rate-tunable picosecond fiber laser to pump two kinds of home-made seven-core PCFs. The influences of PCF structure (fiber dispersion property) and pulse repetition rate (pulse peak power) on the SC generation in multi-core PCFs are investigated in detail. When the picosecond fiber laser at a pulse repetition rate of 1.9 GHz is adopted as the pump, 116 W SC spanning from 800 to 1700 nm is generated in 1# seven-core PCF. Also 64 W visible SC spanning at least 500-1700 nm is demonstrated in 2# seven-core PCF at a pump pulse repetition rate of 480 MHz. The potential of extending the spectral range and scaling the output power for the SC source based on multi-core PCFs are analyzed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call