Abstract
An all‐fiber pulsed coherent Doppler LIDAR (CDL) system is described. It uses a fiber laser as a light source at a 1.54‐μm wavelength, producing 200 μJ pulses at 10 kHz. The local oscillator signal is mixed with the backscattered light (of different frequency) in the fiber. The atmospheric wind speed is determined through the fast Fourier transform applied to the difference frequency signal acquired by an analog‐to‐digital converter card. This system was used to measure the atmospheric wind above the upper‐air meteorological observatory in Rongcheng (37.10°N, 122.25°E) of China between January 7 and 19, 2015. The CDL data are compared with sounding‐ and pilot‐balloon measurements to assess the CDL performance. The results show that the correlation coefficient of the different wind‐speed measurements is 0.93 and their discrepancy 0.64 m/s; the correlation coefficient for wind‐direction values is 0.92 and their discrepancy 5.8 deg. A time serial of the wind field, which benefits the understanding of atmospheric dynamics, is presented after the comparisons between data from CDL and balloons. The CDL system has a compact structure and demonstrates good stability, reliability, and a potential for application to wind‐field measurements in the atmospheric boundary layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.