Abstract

We experimentally demonstrate for the first time, to the best of our knowledge, an all-fiber passively mode-locked laser operation based on the nonlinear multimode interference of step-index multimode fiber. Such a structure couples the light in and out of the multimode fiber via single-mode fibers, and its physical mechanisms for saturable absorption have been analyzed theoretically based on the third-order nonlinear Kerr effect of multimode fiber. Using the nonlinear multimode interference structure with 48.8 mm length step-index multimode fiber, the modulation depth has been measured to be ∼5%. The passively mode-locked laser output pulses have a central wavelength of 1596.66 nm, bandwidth of 2.18 nm, pulsewidth of ∼625 fs, and fundamental repetition rate of 8.726 MHz. Furthermore, the influence of total cavity dispersion on the optical spectrum, pulse width, and output power is investigated systematically by adding different lengths of single-mode fiber and dispersion compensation fiber in the laser cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.