Abstract

Ultrashort pulse (USP) fiber lasers have found applications in such various fields as frequency metrology and spectroscopy, telecommunication systems, etc. For the last decade, mode-locking (ML) fiber lasers have been under carefully investigations for scientific, medical and industrial applications. Also, USP fiber sources can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics with a presence of high value of group velocity dispersion (GVD) and the third order dispersion in the resonator. For more reliable and robust launching of passive mode-locking based on a nonlinear polarization evolution, we used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core ~ 50 mol. %) inside the cavity and we have obtained ultrashort stretched pulses with a high peak power and energy. In this work relative intensity noise and frequency repetition stability is improved by applying isolator-polarizer (ISO-PM) with increased extinction ratio Pext and by compensation of intracavity group-velocity dispersion from the value β2 ~ - 0.021 ps2 to ~ - 0.0053 ps2 at 1550 nm. As a result, we have obtained the low-noise stretched pulse generation with duration ~ 180 fs at a repetition rate ~ 11.3 MHz (with signal-tonoise ratio at fundamental frequency ~ 59 dB) with Allan deviation of a pulse repetition frequency for 1 s interval ~ 5,7 * 10-9 and a relative intensity noise < -101 dBc / Hz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call