Abstract

This study investigated the influence of Trichoderma asperellum on active oxygen production in maize seedlings under saline–alkaline stress conditions. Two maize cultivars were tested: ‘Jiangyu 417’ (‘JY417’), which can tolerate saline–alkaline stress; and, ‘Xianyu 335’ (‘XY335’), which is sensitive to saline–alkaline stress. The seedlings were grown on natural saline–alkaline soil (pH 9.30) in plastic pots. To each liter of saline–alkaline soil, 200 mL of T. asperellum spore suspension was applied; three fungal suspensions were used, namely, 1 × 103, 1 × 106, and 1 × 109 spores/L. A control with only the vehicle applied was also established, along with a second control in which untreated meadow soil (pH 8.23) was used. Root and leaf samples were collected when the seedlings had three heart-shaped leaves and the fourth was in the developmental phase. Physical and biochemical parameters related to oxidation resistance were assessed. The results indicated that the ‘JY417’ and ‘XY335’ seedlings showed different degrees of oxidative damage and differences in their antioxidant defense systems under saline–alkaline stress. As the spore density of the fungal suspension increased, the K+ and Ca2+ contents in the seedlings increased, but Na+ content decreased. Moreover, fungal treatment promoted the synthesis or accumulation of osmolytes, which enhanced the water absorbing capacity of the cells, increased antioxidant enzyme activities, enhanced the content of non-enzyme antioxidants, and reduced the accumulation of reactive oxygen species. Fungal treatment alleviated oxidative damage caused by the saline–alkaline stress in roots and leaves of the seedlings. The application of T. asperellum overcame the inhibitory effect of saline–alkaline soil stress on the growth of maize seedlings. In the present experiment, application with 1 × 109 spores/L gave the optimal results.

Highlights

  • The Songnen Plain, located in the southwest of Heilongjiang Province, is one of the leading grain-producing regions of China

  • Under saline–alkaline stress, maize plants produce excessive reactive oxygen species (ROS), leading to peroxidation of the constituents of the cell membrane, which changes the activities of intracellular enzymes that scavenge active oxygen species and increases the content of thiobarbituric acid reacting substances (TBARS) [6, 7]

  • In Con1, a saline–alkaline stress condition, the leaves showed an obvious loss of color and had turned yellow; by contrast, those treated with T. asperellum had green leaves

Read more

Summary

Introduction

The Songnen Plain, located in the southwest of Heilongjiang Province, is one of the leading grain-producing regions of China. Under saline–alkaline stress, substantial amounts of reactive oxygen species (ROS) are produced in plants, leading to gradual peroxidation of lipids and changes in the activities of antioxidant enzymes [1]. Under saline–alkaline stress, maize plants produce excessive reactive oxygen species (ROS), leading to peroxidation of the constituents of the cell membrane, which changes the activities of intracellular enzymes that scavenge active oxygen species and increases the content of thiobarbituric acid reacting substances (TBARS) [6, 7]. Plants have developed mechanisms to reduce ROS damage These mechanisms fall into two categories, namely enzymatic and non-enzymatic detoxification systems, and are responsible for coordinating the removal of superfluous ROS from plant cells and are, significant for the maintenance of the intracellular redox equilibrium [8]. Ions and osmolytes accumulate in the cells to reduce the osmotic potential and water potential of cells, and make it feasible for them to continue absorbing water so that normal plant growth can be maintained under adverse conditions [9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.