Abstract

Low-dose radiation has been extensively employed in clinical practice, including tumor immunotherapy, chronic inflammation treatment and nidus screening. However, the damage on the spleen caused by low-dose radiation significantly increases the risk of late infection-related mortality, and there is currently no corresponding protective strategy. In the present study, a novel compound preparation named CB001 mainly constituted of Acanthopanax senticosus (AS) and Oldenlandia diffusa (OD) was developed to alleviate splenic injury caused by fractionated low-dose exposures. As our results show that, white pulp atrophy and the excessive apoptosis in spleen tissue induced by radiation exposure were significantly ameliorated by CB001. Mechanistically, BAX-caspase-3 signaling and nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome signaling were demonstrated to be involved in the radio-protective activity of CB001 with the selective activators. Furthermore, the crosstalk between apoptosis signaling and NLRP3 inflammasome signaling in mediating the radio-protective activity of CB001 was clarified, in which the pro-apoptotic protein BAX but not the anti-apoptotic protein Bcl2 was found to be downstream of NLRP3. Our study demonstrated that the use of a novel drug product CB001 can potentially facilitate the alleviation of radiation-induced splenic injury for patients receiving medical imaging diagnosis or fractionated radiation therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call