Abstract

Studies have been made on several wing leading-edge modifications applicable at present to single-engine light aircraft, which produce stabilizing vortices at stall and beyond. These vortices have the effect of fixing the stall pattern of the wing such that the various portions of the wing upper surface stall nearly symmetrically. The lift coefficient produced is maintained at a high level to angles of attack significantly above the stall angle of the unmodified wing, and the divergence in roll usually is reduced to a controllable level. It is hypothesized that these characteristics will help prevent inadvertent spin entry after a stall. Results are presented from recent large-scale wind-tunnel tests of a typical light aircraft, both with and without the modifications. The data indicate (hot the static stall and poststall characteristics of this aircraft, in a typical landing-approach condition, are noticeably improved when it suitable leading-edge modification is employed; and also that no appreciable aerodynamic penalties are evident in the normal flight envelope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.