Abstract

We studied the radiation-induced stress resistance in red pepper leaves under conditions of low-temperature photoinhibition or artificially induced photo-oxidative stress. Plants irradiated with 4, 8, or 16-Gy gamma rays were more resistant to both stress factors than were the controls. However, exposure to a low temperature for 12 h with illumination or photo-oxidative treatment for 1 h differentially affected the irradiated leaves, although they had similar stress intensities as defined by their maximal photochemical efficiencies (Fv/Fm). Decreases in Fv/Fm induced by the two stress factors were instead alleviated, dose-dependently, by as much as 22 to 41% (low temperature) or 14 to 29% (photo-oxidation) in the irradiated groups. In contrast, non-photochemical quenching (NPQ) and the de-epoxidation state of xanthophyll cycle pigments could not be correlated with this enhanced stress resistance in the irradiated groups. These results suggest that the adaptive response of plants exposed to gamma radiation is more effective in protecting against low-temperature photoinhibition than against photo-oxidative stress. We also discuss here the involvement of antioxidative defense systems for increased resistance against low-temperature photoinhibition in irradiated red pepper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.