Abstract

Global nitrogen (N) deposition generally reduces plant biodiversity and changes ecosystem carbon (C) cycle. Light limitation caused by accumulated litter under N enrichment is proposed as a main reason for the decreases of biodiversity and ecosystem C sequestration. However, mechanisms underlying this light limitation effect are not well understood, especially under different N input rates. We conducted a field manipulation experiment with N addition as the primary factor nested with litter manipulation as the secondary factor in an alpine meadow in 2017, measured ecosystem C fluxes and investigated the plant communities about 10 days after the N addition treatment, to examine the responses of biodiversity and ecosystem C sequestration to litter manipulation and N addition. Our results showed that alleviation of light limitation by removing litter increased plant species richness under N enrichment, which principally caused by higher species gains and lower losses. Common and rare species contributed most of the increased species as light limitation was relieved. N addition had no significant impact on net ecosystem productivity (NEP), whereas alleviation of light limitation and the subsequent increase in plant coverage and density under N enrichment stimulated gross primary productivity (GPP) but did not affect ecosystem respiration (ER), causing positive responses of NEP. This study highlights the promoting effect of the enhanced light availability through litter removal on species diversity and ecosystem C sequestration under N enrichment. These findings provide new insights into the mechanisms underlying light limitation influence on biodiversity and ecosystem C sequestration under N enrichment. We suggest that grassland management by removing the accumulated litter is an adaptive way to enhance light availability, mitigate diversity loss and thus increase C sequestration under eutrophication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.