Abstract
Although much interest has been focused on the role of selenium (Se) in plant nutrition over the last 20 years, the influences of organic selenium (selenomethionine; Se-Met) and inorganic selenium (potassium selenite; Se-K) on the growth and physiological characters of cadmium (Cd)-stressed Glycine max L.) seedlings have not yet been studied. In this study, the impacts of Se-Met or Se-K on the growth, water physiological parameters (gaseous exchange and leaf water content), photosynthetic and antioxidant capacities, and hormonal balance of G. max seedlings grown under 1.0 mM Cd stress were studied. The results showed that 30 μM Se-K up-regulates water physiological parameters, photosynthetic indices, antioxidant systems, enzymatic gene expression, total antioxidant activity (TAA), and hormonal balance. In addition, it down-regulates levels of reactive oxygen species (ROS; superoxide free radicals and hydrogen peroxide), oxidative damage (malondialdehyde content as an indicator of lipid peroxidation and electrolyte leakage), Cd translocation factor, and Cd content of Cd-stressed G. max seedlings. These positive findings were in favor of seedling growth and development under Cd stress. However, 50 μM Se-Met was more efficient than 30 μM Se-K in promoting the above-mentioned parameters of Cd-stressed G. max seedlings. From the current results, we conclude Se-Met could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 1.0 mM. However, further work is warranted to better understand the precise mechanisms of Se-Met action under Cd stress conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.