Abstract

Atmospheric dielectric barrier discharge (DBD) was attempted to improve the resistance of wheat seed to drought stress. Effects of DBD plasma on wheat seed germination, seedling growth, osmotic-adjustment products, lipid peroxidation, reactive oxygen species (ROS), antioxidant enzyme activity, abscisic acid, and drought resistant related genes expression under drought stress were investigated. The changes of the wheat seed coat before and after the DBD plasma treatment were explored. Experimental results showed that the DBD plasma treatment could alleviate the adverse effects of drought stress on wheat seed germination and seedling growth; the germination potential and germination rate increased by 27.2% and 27.6%, and the root length and shoot length of the wheat seedlings also increased. Proline and soluble sugar levels under drought stress were improved after the DBD plasma treatment, whereas the malondialdehyde content decreased. ROS contents under drought stress were reduced after the DBD plasma treatment, whereas the activities of superoxide dismutase, catalase, and peroxidase were promoted. DBD plasma treatment promoted abscisic acid generation in wheat seedlings, and it also regulated functional gene LEA1 and stimulated regulation genes SnRK2 and P5CS to resist drought stress. Etching effect and surface modification occurred on the seed coat after the DBD plasma treatment.

Highlights

  • With the continuous deterioration of global warming, water resource deficits and the uneven distribution of water in the world has already resulted in severe water shortages in many countries

  • We investigated the effects of the Dielectric barrier discharge (DBD) plasma treatment on germination and seedling growth, osmotic adjustment ability, membrane lipid peroxidation, reactive oxygen species (ROS), abscisic acid (ABA), and antioxidant enzyme activities in the wheat seeds under drought stress

  • Li et al reported that oilseed rape seed germination performance decreased under drought stress, whereas its germination rate and vigor index under drought stress were enhanced after a cold plasma treatment[16]

Read more

Summary

Introduction

With the continuous deterioration of global warming, water resource deficits and the uneven distribution of water in the world has already resulted in severe water shortages in many countries. Compared with the high frequency and high voltage alternating current power supply with a frequency of approximately 8.0 ~ 15.4 kHz, it was much easier to manufacture the high voltage alternating current power supply with a fixed-frequency of 50 Hz, because the alternating current power supply with a fixed-frequency of 50 Hz has been widely used in the production and daily life in China; in our previous research, DBD plasma with a fix-frequency of 50 Hz was tried to treat wheat seed, and the wheat seed germination and seedling growth were enhanced and the permeability of seed coat and soluble protein content were improved after the DBD plasma treatment[20]. This was expected to provide a theoretical and practical foundation for the application of DBD plasma in the improvement of seed drought resistance

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.