Abstract

BackgroundResveratrol (Res) is a type of polyphenol found in many plants, which can protect important organs from the damage induced by sepsis. However, the exact mechanism of its protective effect has not been established. This study investigated the effect of Res on the PI3K/Nrf2/HO-1 signaling pathway in rats with sepsis-induced acute lung injury (ALI).Material/MethodsMale Wistar rats were treated with 30 mg/kg Res by intraperitoneal administration for 1 hour immediately after cecal ligation and puncture. Levels of MIP-2, IL-18, and IL-10 in bronchoalveolar lavage fluid (BALF) were determined. Lung tissues were collected to measure the wet-to-dry (W/D) ratios, oxidative stress index, and lung injury scores. Expression levels of Akt, p-Akt, HO-1, Nrf-2, and active caspase-3 proteins were determined by western blotting; expression of HO-1 mRNA was determined by RT-PCR.ResultsTreatment with Res significantly decreased the levels of MIP-2 and IL-18 and increased IL-10 in the BALF of rats with sepsis-induced ALI. In addition, Res also effectively reduced the W/D lung weight ratio, lung injury score, and the levels of MDA (malondialdehyde) and 8-OHdG. Conversely, Res increased SOD (superoxide dismutase) activity in the lung tissue. Moreover, Res significantly induced higher HO-1 mRNA expression, upregulated HO-1 and Nrf-2 protein expression, and the phosphorylation of Akt in the lung tissue. In contrast, the levels of activated caspase-3 protein were decreased in Res-treated rats (P<0.05).ConclusionsRes could inhibit inflammation, oxidative stress, and cell apoptosis to alleviate ALI in septic rats through the inhibition of the PI3K/Nrf2/HO-1 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.