Abstract

Neuroinflammation is one of the important manifestations of the amyloid β peptide (Aβ) protein-induced neurotoxic signaling pathway in which the aggregation of Aβ causes an increase in reactive oxygen species (ROS) and Ca2+ concentration. Here, near-infrared (NIR) photothermal-responsive conjugated polymer nanoparticles were designed to regulate ROS and Ca2+ signaling to alleviate neuroinflammation. Under 808 nm laser irradiation, the nanoparticles effectively penetrated the blood-brain barrier (BBB) and reduced the aggregation of Aβ and partially disaggregated the aggregates outside the cell, thereby reducing ROS content which downregulated the oxidative stress damage to cells. Meanwhile, the nanoparticles reduced the concentration of Ca2+ by inhibiting the transient receptor potential melastatin-related 2 (TRPM2) ion channel inside the cell. Ultimately, the concentration of inflammatory factor tumor necrosis factor-α was decreased. This study provides an effective strategy to reduce neuroinflammation by simultaneously regulating ROS and Ca2+ signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.