Abstract
Recommendation bias towards objects has been found to have an impact on personalized recommendation, since objects present heterogeneous characteristics in some network-based recommender systems. In this article, based on a biased heat conduction recommendation algorithm (BHC) which considers the heterogeneity of the target objects, we propose a heterogeneous heat conduction algorithm (HHC), by further taking the heterogeneity of the source objects into account. Tested on three real datasets, the Netflix, RYM and MovieLens, the HHC algorithm is found to present better recommendation in both the accuracy and diversity than two benchmark algorithms, i.e., the original BHC and a hybrid algorithm of heat conduction and mass diffusion (HHM), while not requiring any other accessorial information or parameter. Moreover, the HHC algorithm also elevates the recommendation accuracy on cold objects, referring to the so-called cold-start problem. Eigenvalue analyses show that, the HHC algorithm effectively alleviates the recommendation bias towards objects with different level of popularity, which is beneficial to solving the accuracy-diversity dilemma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.