Abstract
AbstractReliable precipitation simulation over the Tibetan Plateau (TP) remains a challenge, manifested by a prominent systematic wet bias in the warm season. Previous studies have generally neglected the potential linkage between surface radiation energy budget and precipitation bias. Prevalent scattered cumulus and thunderstorms over the TP in summer strongly influence surface radiation. A cloud fraction scheme considering subgrid temperature and humidity fluctuations is implemented in the WRF model and tested for a month‐long simulation. It is found that the scheme better reproduces the surface solar radiation compared to a default cloud fraction scheme in the WRF model. Using abundant surface observations, we find that overestimation of the downward surface shortwave radiation (DSSR) would lead to wet bias. DSSR overestimation contributes to higher surface temperature and larger evaporation and enhanced atmospheric instability, which favor more simulated convective precipitation. The study suggests that a better simulation of clouds and surface radiation would benefit precipitation simulation over the plateau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.