Abstract

The skin prick test (SPT) is a key tool for identifying sensitized allergens associated with immunoglobulin E-mediated allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, urticaria, angioedema, and anaphylaxis. However, the SPT is labor-intensive and time-consuming due to the necessity of measuring the sizes of the erythema and wheals induced by allergens on the skin. In this study, we used an image preprocessing method and a deep learning model to segment wheals and erythema in SPT images captured by a smartphone camera. Subsequently, we assessed the deep learning model's performance by comparing the results with ground-truth data. Using contrast-limited adaptive histogram equalization (CLAHE), an image preprocessing technique designed to enhance image contrast, we augmented the chromatic contrast in 46 SPT images from 33 participants. We established a deep learning model for wheal and erythema segmentation using 144 and 150 training datasets, respectively. The wheal segmentation model achieved an accuracy of 0.9985, a sensitivity of 0.5621, a specificity of 0.9995, and a Dice similarity coefficient of 0.7079, whereas the erythema segmentation model achieved an accuracy of 0.9660, a sensitivity of 0.5787, a specificity of 0.97977, and a Dice similarity coefficient of 0.6636. The use of image preprocessing and deep learning technology in SPT is expected to have a significant positive impact on medical practice by ensuring the accurate segmentation of wheals and erythema, producing consistent evaluation results, and simplifying diagnostic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.