Abstract
To facilitate allergen removal from indoor environments, it would be helpful to have household cleaning products that modified allergenic activity. Because NaOCl dissolves proteins in high concentrations and is both capable of killing bacteria and viruses and inactivating viral antigens at somewhat lower concentrations, we explored its effects on Mus m 1 and other indoor allergens. To examine the ability of NaOCl to reduce the allergenicity of Mus m 1 and other indoor allergens. Using purified mouse urinary allergen, we examined the effect on protein measured by Coomassie protein assay and on Mus m 1 measured by ELISA. We also examined the effects using SDS/PAGE and Western blots probed with sheep anti-Mus m 1 and with allergic human serum. When NaOCl and Mus m 1 were combined in a molar ratio of 100 : 1, IgE binding to Mus m 1 on Western blot was significantly reduced. At higher NaOCl concentrations the protein appeared to fragment and eventually became undetectable. Fragmentation appeared to be random in that peptides of a wide range of apparent molecular weight were produced. The reaction was complete within 1-2 min at OCl : pr ratios of greater than 200 : 1 and was optimal at pH 7.4. Immunological activity of other allergens (Fel d 1, Bla g 1, Der p 1) was decreased in vitro and dried allergen extracts were removed from surfaces. Adding an extraneous protein, BSA, to NaOCl:Mus m 1 solutions decreased the effect of NaOCl on the allergen. We concluded that NaOCl at concentrations commonly used in household products is capable of dramatically affecting allergenic protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.