Abstract
Allen's Interval Algebra is among the leading formalisms in the area of qualitative temporal reasoning. However, its applications are restricted to linear flows of time. While there is some recent work studying relations between intervals on branching structures, there is no rigorous study of the first-order theory of branching time. In this paper, we approach this problem under a general definition of time structures, namely, tree-like lattices. Allen's work proved that meets is expressively complete in the linear case. We also prove that, surprisingly, it remains complete for all unbounded tree-like lattices. This does not generalize to the case of all tree-like lattices, for which we prove that the smallest complete set of relations has cardinality three. We provide in this paper a sound and complete axiomatic system for both the unbounded and general case, in Allen's style, and we classify minimally complete and maximally incomplete sets of relations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.