Abstract

Field experiments were established to assess possible allelopathic suppression by Lantana camara L. of two indigenous tree species. The design allowed comparison of allelopathic effects with density-dependent resource competition effects. Fire and its role in competitive interactions was included as an experimental treatment. Allelopathic responses were measured in L. camara thickets by germinating and growing Alectryon subcinereus (A. Gray) Radlk. in dry rainforest ecotones (Macleay River) or Cryptocarya rigida (Meissner) in warm temperate rainforest and wet sclerophyll forest (Lake Macquarie) at 10, 20 and 30 seedlings m-2, where L. camara was either physically removed (LR), burnt (LB), or cut and left in place (LT). Germination for both species increased significantly by completely removing L. camara (LR) whereas burning (LB) was significant only for C. rigida. Seedling growth for both species was negatively related to increasing density when all L. camara was removed (LR) but was positively related in the other two treatments (LB and LT). C. rigida seedling biomass increased 47.4% (1.75%2.58 g) and 68.6% (1.98%2.95 g) with increasing seedling density for LT and LB respectively and decreased 23.2% (2.93–2.25 g) for LR. A. subcinereus seedling biomass increased 29.7% (1.95–2.53 g) and 34.7% (2.25–3.03 g) with increasing seedling density for LT and LB respectively and decreased 27.9% (3.30–2.38 g) for LR. Phytotoxin dilution effects were inferred in LT and LB rather than density-dependent intraspecific competition, whereas the reverse was true for LR. Seedling biomass for C. rigida resulting from potential phytotoxin dilution at high seedling density was not significantly different from the response of LR at low seedling density but, for A. subcinereus, the phytotoxin dilution response was significantly less than LR at low seedling density. Moderately intense fire (LB) was not significantly different from the LT treatment at both locations, emphasising that moderate to low intensity fires should not be used to control existing invasions of L. camara. Competitive strategies for invasive populations are identified that may modify succession following disturbance, thereby allowing thicket formation and long-term persistence to affect community dynamics. Such strategies need to be recognised in managing natural communities, particularly for biodiversity conservation. Nomenclature: Harden (1990).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call