Abstract

BackgroundCharacterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively.MethodsParasite genomic DNA was extracted from 187 dried blood spot collected from confirmed uncomplicated P. falciparum malaria infected patients in Senegal (94) and Nigeria (93). Allelic polymorphism at merozoite surface protein 1 (msp1) and merozoite surface protein- 2 (msp2) genes were assessed by nested PCR.ResultsThe most frequent msp1 and msp2 allelic families are the K1 and IC3D7 allelotypes in both Senegal and Nigeria. Multiplicity of infection (MOI) of greater that 1 and thus complex infections was common in both study sites in Senegal (Thies:1.51/2.53; Kedougou:2.2/2.0 for msp1/2) than in Nigeria (Gbagada: 1.39/1.96; Oredo: 1.35/1.75]). The heterozygosity of msp1 gene was higher in P. falciparum isolates from Senegal (Thies: 0.62; Kedougou: 0.53) than isolates from Nigeria (Gbagada: 0.55; Oredo: 0.50). In Senegal, K1 alleles was associated with heavy than with moderate parasite density. Meanwhile, equal proportions of K1 were observed in both heavy and moderate infection types in Nigeria. The IC3D7 subtype allele of the msp2 family was the most frequent in heavily parasitaemic individuals from both countries than in the moderately infected participants.ConclusionThe unexpectedly low genetic diversity of infections high endemic Nigerian setting compared to the low endemic settings in Senegal is suggestive of possible epidemic outbreak in Nigeria.

Highlights

  • Characterizing the genetic diversity of malaria parasite populations in different endemic settings could be helpful in determining the effectiveness of malaria interventions

  • Senegal and Nigeria are both located in western part of Africa with different levels of interventions, heterogeneity in endemicity and transmission

  • Lagos state shares a border with the Republic of Benin and is hypo-endemic in most part with a 1.9% prevalence rate in children age 6–59 months [19]. This is in part due to the expansion of insecticide-treated nets (ITNs) coverage, and active indoor residual spraying (IRS) in many of its LGAs [20]

Read more

Summary

Introduction

Characterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively. Malaria caused by Plasmodium falciparum continues to be a significant public health havoc in many endemic countries in tropical and sub-tropical parts of the world [1]. Senegal and Nigeria are both located in western part of Africa with different levels of interventions, heterogeneity in endemicity and transmission. In Senegal, malaria prevalence is generally low but, the entire population remain at risk and transmission increases gradually from the northern to the Southern part, corresponding to hyperendemicity from the south (annual incidence > 100/1000 inhabitants) to hypoendemicity in the North (annual incidence < 5/1000 inhabitants), respectively [3]. 40% of Nigeria gross domestic product is spent on malaria control [5], yet the country contribute about 25% of annual global incidence rates

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call