Abstract

To reveal the allelic differentiations at the two genes for fertility restoration (Rf) on chromosomes 1 (Rf3) and 10 (Rf4), 15 chromosome single segment substitution lines (SSSLs) with the Rf3 locus and 18 SSSLs with the Rf4 locus were crossed with Bobai A (BbA), a cytoplasmic male sterility line with wild abortive type of cytoplasm (WA-CMS), respectively. Based on the pollen and seed fertility of the F1 hybrids, the Rf3 and Rf4 genes were each classified into four alleles, namely Rf3-1, Rf3-2, Rf3-3, and Rf3-4 for Rf3, and Rf4-1, Rf4-2, Rf4-3, and Rf4-4 for Rf4. Out of the 33 SSSLs, an SSSL W23-19-06-06-11 carrying the genotype Rf3-4Rf3-4/Rf4-4Rf4-4 possessed the strongest restoring ability for BbA. To determine the genetic effects of Rf3 and Rf4 for WA-CMS, one BC3F2 population possessing the genetic background of W23-19-06-06-11 was generated from the cross between W23-19-06-06-11 and BbA by backcrossing and marker-assisted selection. In the BC3F2 population, the plants carrying the Rf3Rf3/Rf4Rf4, Rf3Rf3/rf4rf4, and rf3rf3/Rf4Rf4 genotypes were selected and their phenotyping for pollen and spikelet fertility were evaluated. The result showed that under the genetic background of SSSL W23-19-06-06-11, the effect of Rf4 appeared to be slightly larger than that of Rf3 and their effects were additive for WA-CMS system. These studies will lead to the transfer of Rf genes into adapted cultivars through marker-assisted selection in active hybrid rice breeding programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call