Abstract

Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae.

Highlights

  • Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with plants and are grouped in the phylum Glomeromycota [1,2]

  • We explore the extent of within-isolate genetic polymorphism for PLS in Glomus etunicatum and investigate whether a bottleneck of allelic variation and segregation occur at sporulation

  • If we assumed that every new single nucleotide polymorphism (SNP) represented a different allele, we found 113 sequences containing 66 variable sites

Read more

Summary

Introduction

Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with plants and are grouped in the phylum Glomeromycota [1,2]. They improve nutrient uptake in their host plants and buffer the plant against both abiotic and biotic stresses [3,4,5]. Arbuscular mycorrhizal fungi are made up of vast, branching networks of hyphae. These hyphae are coenocytic, or lacking discrete cellular divisions. Spores are formed as outgrowths from the parent hyphae, and large numbers of nuclei migrate directly into the spores [7,8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call