Abstract

Epidermolysis bullosa simplex (EBS) is a rare mechanobullous disease caused by dominant-negative mutations in either keratin 5 (KRT5) or keratin 14 (KRT14) genes. Until now, there is no cure for EBS and the care is primarily palliative. The discovery of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system raised hope for the treatment of EBS and many other autosomal dominant diseases by mutant allele-specific gene disruption. In this study, we aim to disrupt the mutant allele for the heterozygous EBS pathogenic variation c.449T>C (p.Leu150Pro) within KRT5. This mutation generates, naturally, a novel protospacer-adjacent motif for the endonuclease Streptococcus pyogenes Cas9. Thus, we designed a single-guide RNA that guides the Cas9 to introduce a DNA cleavage of the mutant allele in patient's keratinocytes. Then, transfected cells were single-cell cloned and analyzed by deep sequencing. The expression of KRT5 and KRT14 was quantified, and the keratin intermediate filament stability was assessed. Results showed successful stringent mutant allele-specific knockout. An absence of synthesis of mutant transcript was further confirmed indicating permanent mutant allele-specific inactivation. Edited EBS patient keratinocytes produced a lower amount of K5 and K14 proteins compared with nonedited EBS cells, and no disturbance of cellular properties was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call