Abstract

Marek’s disease (MD) is a T cell lymphoma disease induced by Marek’s disease virus (MDV), a highly oncogenic α herpesvirus primarily affecting chickens. MD is a chronic infectious disease that threatens the poultry industry. However, the mechanisms of genetic resistance for MD are complex and not completely understood. In this study, to identify high-confidence candidate genes of MD genetic resistance, high throughput sequencing (RNA-seq) was used to obtain transcriptomic data of CD4+ T cells isolated from MDV-infected and non-infected groups of two reciprocal crosses of individuals mating by two highly inbred chicken lines (63 MD-resistant and 72 MD-susceptible). After RNA-seq analysis with two biological replicates in each group, we identified 61 and 123 single nucleotide polymorphisms (SNPs) (false discovery rate (FDR) < 0.05) annotated in 39 and 132 genes in intercrosses 63 × 72 and 72 × 63, respectively, which exhibited allele-specific expression (ASE) in response to MDV infection. Similarly, we identified 62 and 79 SNPs annotated in 66 and 96 genes in infected and non-infected groups, respectively. We identified 534 and 1543 differentially expressed genes (DEGs) (FDR < 0.05) related to MDV infection in intercrosses 63 × 72 and 72 × 63, respectively. We also identified 328 and 20 DEGs in infected and non-infected groups, respectively. The qRT-PCR using seven DEGs further verified our results of RNA-seq analysis. The qRT-PCR of 11 important ASE genes was performed for gene functional validation in CD4+ T cells and tumors. Combining the analyses, six genes (MCL1, SLC43A2, PDE3B, ADAM33, BLB1, and DMB2), especially MCL1, were highlighted as the candidate genes with the potential to be involved in MDV infection. Gene-set enrichment analysis revealed that many ASE genes are linked to T cell activation, T cell receptor (TCR), B cell receptor (BCR), ERK/MAPK, and PI3K/AKT-mTOR signaling pathways, which play potentially important roles in MDV infection. Our approach underlines the importance of comprehensive functional studies for gaining valuable biological insight into the genetic factors behind MD and other complex traits, and our findings provide additional insights into the mechanisms of MD and disease resistance breeding in poultry.

Highlights

  • Marek’s disease (MD) is a T cell lymphoma and a strictly cell-associated disease induced by the highly oncogenic α-herpesvirus II disease virus [1], which has a complex life with four main phases [2,3]: an early cytolytic phase at 2–7 days post infection, a latent phase around 7–10 dpi, a late cytolytic phase with the presence of tumors that is triggered between 14 and 21 dpi, and a final proliferation phase after 28 dpi

  • In this study, based on the DAVID and Ingenuity Pathway Analysis (IPA) results, we focused on several important pathways that may be related to Marek’s disease virus (MDV) infection

  • We successfully identified single nucleotide polymorphisms (SNPs) associated with allele-specific expression (ASE) and revealed genes and pathways that may be involved in genetic resistance to MD

Read more

Summary

Introduction

Marek’s disease (MD) is a T cell lymphoma and a strictly cell-associated disease induced by the highly oncogenic α-herpesvirus II disease virus [1], which has a complex life with four main phases [2,3]: an early cytolytic phase at 2–7 days post infection (dpi), a latent phase around 7–10 dpi, a late cytolytic phase with the presence of tumors that is triggered between 14 and 21 dpi, and a final proliferation phase after 28 dpi. During the first cytolytic phase, Marek’s disease virus (MDV) first uses B cells as targets for its replication before targeting activated CD4+ T cells to enable a persistent latent infection [4,5,6]. Enhancing genetic resistance to MD in poultry is an important long-term goal in controlling MD. To optimally implement this control strategy through marker assisted selection (MAS) and to understand the etiology and mechanisms of MD, it is necessary to identify more specific alleles and genes with respect to MD latency, alleles at the well-studied major histocompatibility complex (MHC) locus are already known to be involved in genetic resistance to MD

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.