Abstract
Post-transcriptional gene silencing is a promising therapy for the monogenic, autosomal dominant, Huntington’s disease (HD). However, wild-type huntingtin (HTT) has important cellular functions, so the ideal strategy would selectively lower mutant HTT while sparing wild-type. HD patients were genotyped for heterozygosity at three SNP sites, before phasing each SNP allele to wild-type or mutant HTT. Primary ex vivo myeloid cells were isolated from heterozygous patients and transfected with SNP-targeted siRNA, using glucan particles taken up by phagocytosis. Highly selective mRNA knockdown was achieved when targeting each allele of rs362331 in exon 50 of the HTT transcript; this selectivity was also present on protein studies. However, similar selectivity was not observed when targeting rs362273 or rs362307. Furthermore, HD myeloid cells are hyper-reactive compared to control. Allele-selective suppression of either wild-type or mutant HTT produced a significant, equivalent reduction in the cytokine response of HD myeloid cells to LPS, suggesting that wild-type HTT has a novel immune function. We demonstrate a sequential therapeutic process comprising genotyping and mutant HTT-linkage of SNPs, followed by personalised allele-selective suppression in a small patient cohort. We further show that allele-selectivity in ex vivo patient cells is highly SNP-dependent, with implications for clinical trial target selection.
Highlights
Huntington’s disease (HD) is a fatal, autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene[1]
Allele-selective HTT suppression in HD patient cells using siRNA targeted to rs362331
Diagnostic DNA samples were analysed to determine individual single nucleotide polymorphisms (SNPs) genotypes for a cohort of HD patients; we identified fifty-seven individuals who were heterozygous for rs362331, thirty-eight who were heterozygous for rs362273 and fifty-four who were heterozygous for rs362307
Summary
Huntington’s disease (HD) is a fatal, autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin (HTT) gene[1]. Allele-selective suppression of mHTT has not yet been demonstrated in accessible primary ex vivo HD patient cells, with samples taken from a cohort of patients whose genotype was not known a priori. Results Allele-selective HTT suppression in HD patient cells using siRNA targeted to rs362331.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.