Abstract

The immune responses of natural killer cells are regulated, in part, by killer cell immunoglobulin-like receptors (KIR). The 16 closely-related genes in the KIR gene system have been diversified by gene duplication and unequal crossing over, thereby generating haplotypes with variation in gene copy number. Allelic variation also contributes to diversity within the complex. In this study, we estimated allele-level haplotype frequencies and pairwise linkage disequilibrium statistics for 14 KIR loci. The typing utilized multiple methodologies by four laboratories to provide at least 2x coverage for each allele. The computational methods generated maximum-likelihood estimates of allele-level haplotypes. Our results indicate the most extensive allele diversity was observed for the KIR framework genes and for the genes localized to the telomeric region of the KIR A haplotype. Particular alleles of the stimulatory loci appear to be nearly fixed on specific, common haplotypes while many of the less frequent alleles of the inhibitory loci appeared on multiple haplotypes, some with common haplotype structures. Haplotype structures cA01 and/or tA01 predominate in this cohort, as has been observed in most populations worldwide. Linkage disequilibrium is high within the centromeric and telomeric haplotype regions but not between them and is particularly strong between centromeric gene pairs KIR2DL5∼KIR2DS3S5 and KIR2DS3S5∼KIR2DL1, and telomeric KIR3DL1∼KIR2DS4. Although 93% of the individuals have unique pairs of full-length allelic haplotypes, large genomic blocks sharing specific sets of alleles are seen in the most frequent haplotypes. These high-resolution, high-quality haplotypes extend our basic knowledge of the KIR gene system and may be used to support clinical studies beyond single gene analysis.

Highlights

  • The natural killer (NK) cell immunoglobulin-like receptor (KIR) genes are clustered in a,160 kilobase region in the leukocyte receptor gene complex on the long arm of human chromosome 19 [1,2,3]

  • The KIR gene complex consists of a centromeric region bordered by the genes KIR3DL3 and KIR3DP1 and a telomeric region bordered by KIR2DL4 and KIR3DL2

  • Genotype Assignment Genotyping for the 14 functional KIR loci in the study cohort yielded three-digit allele assignments for each locus present in each of the 506 individuals

Read more

Summary

Introduction

The natural killer (NK) cell immunoglobulin-like receptor (KIR) genes are clustered in a ,160 kilobase (kb) region in the leukocyte receptor gene complex on the long arm of human chromosome 19 [1,2,3]. The KIR genes lie less than 3 kb apart. Six genes (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1) encode proteins on the surface of NK cells with short (S) intracytoplasmic tails that are thought to be activating receptors [4]. Seven genes (KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5, KIR3DL1, KIR3DL2, and KIR3DL3) encode cell surface receptors with longer (L) cytoplasmic tails whose signals inhibit NK cell activation. KIR2DL4 encodes a receptor that performs both inhibitory and activating functions.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call