Abstract

Resolving the role of natural selection is a basic objective of evolutionary biology. It is generally difficult to detect the influence of selection because ubiquitous non-selective stochastic change in allele frequencies (genetic drift) degrades evidence of selection. As a result, selection scans typically only identify genomic regions that have undergone episodes of intense selection. Yet it seems likely such episodes are the exception; the norm is more likely to involve subtle, concurrent selective changes at a large number of loci. We develop a new theoretical approach that uncovers a previously undocumented genome-wide signature of selection in the collective divergence of allele frequencies over time. Applying our approach to temporally resolved allele frequency measurements from laboratory and wild Drosophila populations, we quantify the selective contribution to allele frequency divergence and find that selection has substantial effects on much of the genome. We further quantify the magnitude of the total selection coefficient (a measure of the combined effects of direct and linked selection) at a typical polymorphic locus, and find this to be large (of order 1%) even though most mutations are not directly under selection. We find that selective allele frequency divergence is substantially elevated at intermediate allele frequencies, which we argue is most parsimoniously explained by positive-not negative-selection. Thus, in these populations most mutations are far from evolving neutrally in the short term (tens of generations), including mutations with neutral fitness effects, and the result cannot be explained simply as an ongoing purging of deleterious mutations.

Highlights

  • One of the central problems of evolutionary biology is to delineate the role of natural selection in shaping genetic variation

  • Negative selection purging the influx of deleterious mutations is probably prevalent [6, 7], but positive selection on rarer advantageous mutations is crucial for adaptive evolution and likely has a hand in shaping neutral variation [8]

  • Applying our approach to Evolve and resequence (E&R) and wild Drosophila single nucleotide polymorphism (SNP) data we find evidence of strong linked selection affecting most SNPs

Read more

Summary

Introduction

One of the central problems of evolutionary biology is to delineate the role of natural selection in shaping genetic variation. Most genetic variation consists of neutral mutations which, though having no appreciable effects on fitness, are not free from the influence of selection. When selection acts on non-neutral mutations, neutral mutations that share similar genetic backgrounds can be dragged along for the ride, a process called linked selection [1]. The extent to which linked selection influences neutral variation is a major point of contention [2, 3]— one with practical implications because putatively neutral mutations are widely used to infer population demographic history [4] and as a baseline for detecting selection [2, 5]. Negative selection purging the influx of deleterious mutations is probably prevalent [6, 7], but positive selection on rarer advantageous mutations is crucial for adaptive evolution and likely has a hand in shaping neutral variation [8]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.