Abstract

All-d-metal Ni(Co)-Mn-Ti Heusler alloys show high magnetocaloric/barocaloric effects ascribed to the occurrence of a martensitic transformation together with excellent mechanical properties. However, high magnetic fields are needed to fully drive the transformation and to obtain their maximum responses. To further tune the martensitic transition and the associated magnetocaloric response, we systematically investigate the role of partial Mn substitution by Fe or Cr on the parent composition Ni36Co14Mn35Ti15. On the one hand, Cr doping increases the entropy change of the transformation but causes a tighter overlap of both martensitic and Curie transitions. This significantly reduces the magnetization difference between austenite and martensite and, consequently, strongly decreases the magnetocaloric response. On the other hand, Fe doping reduces the entropy change of the transformation and separates both martensitic and Curie transitions while keeping the magnetization difference among both phases. These two combined features reduce the magnetic field needed to completely drive the martensitic transformation and leads to higher and broader isothermal entropy change peaks for moderate magnetic field changes, reaching up to 25% enhancement for 2 T when compared to the undoped alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.