Abstract
AbstractThe anode materials for sodium‐ion batteries (SIBs) such as soft carbon, hard carbon, or alloys suffer from low specific capacity, poor rate capability, and high cost. Various transition metal oxides materials possess high specific capacity and suitable working potential, however, huge volume change and unstable electrode/electrolyte interfaces limit their practical applications. Herein, an ultrathin carbon‐coated iron‐based borate, (Fe3BO5), as an anode material for SIBs is reported. The carbon coated Fe3BO5 composite as an anode material possesses a reversible specific capacity of 548 mAh g−1 with a high initial coulombic efficiency of 72.6% at a current density of 50 mA g−1, and maintains a capacity retention ratio of 99% after 1000 cycles at 2000 mA g−1. Moreover, this anode can work well over a wide temperature range (‐40–60 °C). Furthermore, a sodium‐ion full cell using this anode coupling with iron‐based cathode (Na3Fe2(PO4)2(P2O7)@rGO) cathode is fabricated, which exhibits a wide operating temperature range from −40 to 60 °C with a maximum energy density of 175 Wh Kg−1 and a maximum power density of 1680 W Kg−1. Most importantly, this full‐cell configuration is low‐cost due to its inexpensive iron based raw material for both anode and cathode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.