Abstract
Distributed Bragg Reflectors (DBR) are well-established photonic structures that are used in many photonic applications. However, most of the DBRs are based on different materials or require post-process etching which can hinder integration with other components in the final photonic structure. Here, we demonstrate the fabrication of DBR structures consisting only of undoped boron nitride (BN) layers with high refractive index contrast by using metal–organic chemical vapor deposition (MOCVD). This has been achieved in a single process, without the need for any post-process etching. The difference in the refractive index of the component BN layers stems from different degrees of porosity of the individual BN layers, which is a direct result of a different growth temperature. The fabricated DBR structures consist of 15.5 pairs of BN layers and exhibit a reflectance of 87 ± 1% at the maximum. The wavelength of maximum reflectance can be tuned from 500 nm up to the infrared region (IR), by simply adjusting the growth periods of subsequent BN layers. We also demonstrate that the fabricated structures can be used to create an optical microcavity. The fabricated DBRs are very promising candidates for future applications, for example in combination with single-photon emitters in h-BN, which could allow the building of a cavity-based all-BN single-photon source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.