Abstract

The efficient synthesis of all-acrylic, film-forming, core-shell colloidal nanocomposite particles via in situ aqueous emulsion copolymerization of methyl methacrylate with n-butyl acrylate in the presence of a glycerol-functionalized ultrafine silica sol using a cationic azo initiator at 60 °C is reported. It is shown that relatively monodisperse nanocomposite particles can be produced with typical mean weight-average diameters of 140-330 nm and silica contents of up to 39 wt %. The importance of surface functionalization of the silica sol is highlighted, and it is demonstrated that systematic variation of parameters such as the initial silica sol concentration and initiator concentration affect both the mean particle diameter and the silica aggregation efficiency. The nanocomposite morphology comprises a copolymer core and a particulate silica shell, as determined by aqueous electrophoresis, X-ray photoelectron spectroscopy, and electron microscopy. Moreover, it is shown that films cast from n-butyl acrylate-rich copolymer/silica nanocomposite dispersions are significantly more transparent than those prepared from the poly(styrene-co-n-butyl acrylate)/silica nanocomposite particles reported previously. In the case of the aqueous emulsion homopolymerization of methyl methacrylate in the presence of ultrafine silica, a particle formation mechanism is proposed to account for the various experimental observations made when periodically sampling such nanocomposite syntheses at intermediate comonomer conversions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call